January 21, 1999

PHYSICAL APPLICATIONS OF GEOMETRIC ALGEBRA

LECTURE 3

SUMMARY

This lecture is split into three sections. In the first we will conclude our treatment of rigid body dynamics by solving the equations of motion for a symmetric top. In the second section we will put some of the ideas from the first two lectures onto a firmer axiomatic basis. In the final section we will start to look at the GA treatment of reflections and rotations in greater depth.

- The inertia Tensor.
- The rotor solution for the motion of a symmetric top.
- The axioms of geometric algebra.
- An array of useful algebraic results.
- Reflections, rotations and rotors

The webpage for this course is

www.mrao.cam.ac.uk/~clifford/ptlllcourse/.

THE INERTIA TENSOR

Rigid body has density ρ , so

$$\int d^3x \, \rho = m, \qquad \int d^3x \, \rho x = 0$$

The velocity of the point y is

$$v(t) = \dot{R}x\tilde{R} + Rx\dot{\tilde{R}} + \dot{x}_0$$

$$= -\frac{1}{2}R\Omega_Bx\tilde{R} + \frac{1}{2}Rx\Omega_B\tilde{R} + v_0$$

$$= Rx\cdot\Omega_B\tilde{R} + v_0$$

 (v_0) is the velocity of the centre of mass.) We need the angular momentum bivector L

$$L = \int d^3x \, \rho(y - x_0) \wedge v$$

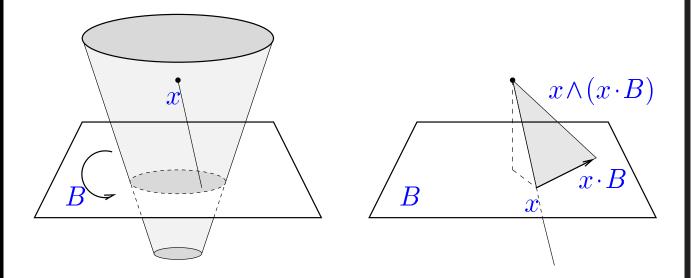
$$= \int d^3x \, \rho(Rx\tilde{R}) \wedge (Rx \cdot \Omega_B \, \tilde{R} + v_0)$$

$$= R \left(\int d^3x \, \rho x \wedge (x \cdot \Omega_B) \right) \tilde{R}$$

From this we extract inertia tensor \mathcal{I}

$$\mathcal{I}(B) = \int d^3x \, \rho x \wedge (x \cdot B)$$

A linear function mapping bivectors to bivectors.



The body rotates in the B plane, at angular frequency |B|. The momentum density is $\rho x \cdot B$. Angular momentum density is $x \wedge (\rho x \cdot B)$. Integrate to get the total, $\mathcal{I}(B)$, expressed in the reference body. Rotate to

$$L = R\mathcal{I}(\Omega_B)\tilde{R}$$

 $\mathcal{I}(B)$ will lie in the same plane as B if B is perpendicular to one of the principal axes

Now $\dot{L}=T$ (the couple as a bivector), so form

$$\dot{L} = \dot{R}\mathcal{I}(\Omega_B)\tilde{R} + R\mathcal{I}(\Omega_B)\dot{\tilde{R}} + R\mathcal{I}(\dot{\Omega}_B)\tilde{R}
= R[\mathcal{I}(\dot{\Omega}_B) - \frac{1}{2}\Omega_B\mathcal{I}(\Omega_B) + \frac{1}{2}\mathcal{I}(\Omega_B)\Omega_B]\tilde{R}
= R[\mathcal{I}(\dot{\Omega}_B) - \Omega_B \times \mathcal{I}(\Omega_B)]\tilde{R}.$$

Have introduced the extremely useful commutator product

$$A \times B = \frac{1}{2}(AB - BA)$$

Do not confuse with the cross product! The torque-free equation $\dot{L}=0$ reduces to

$$\mathcal{I}(\dot{\Omega}_B) - \Omega_B \times \mathcal{I}(\Omega_B) = 0$$

Align the body frame $\{e_k\}$ with the principal axes, with moments of inertia $i_k, k=1\dots 3$. Have

$$\Omega_B = \sum_k \omega_k I e_k, \qquad \Omega_S = \sum_k \omega_k I f_k$$

and

$$L = \sum_{k} i_k \omega_k I f_k.$$

Expanding out recovers the Euler equations, e.g.

$$\dot{\omega}_3 I i_3 e_3 = (\omega_1 I e_1 + \omega_2 I e_2) \times (\omega_1 i_1 I e_1 + \omega_2 i_2 I e_2)$$

$$\Rightarrow i_3 \dot{\omega}_3 = (i_1 - i_2) \omega_1 \omega_2$$

EXAMPLE — THE SYMMETRIC TOP

Have two equal moments of inertia, $i_1=i_2\neq i_3$. Immediately get that ω_3 is constant. (Handout gives an alternative coordinate-free derivation). Write

$$\mathcal{I}(B) = i_1 B + (i_3 - i_1)(B \wedge e_3)e_3$$

NB $B \wedge e_3$ is a trivector. Now have

$$i_1\Omega_B = \mathcal{I}(\Omega_B) - (i_3 - i_1)(\Omega_B \wedge e_3)e_3$$
$$= \mathcal{I}(\Omega_B) + (i_1 - i_3)\omega_3 Ie_3$$

SO

$$\Omega_S = R\Omega_B \tilde{R} = \frac{1}{i_1} L + \frac{i_1 - i_3}{i_1} \omega_3 R I e_3 \tilde{R}$$

The rotor equation now becomes

$$\dot{R} = -\frac{1}{2}\Omega_S R = -\frac{1}{2i_1}(LR + R(i_1 - i_3)\omega_3 Ie_3)$$

Define two constant precession rates,

$$\Omega_l = \frac{1}{i_1}L, \qquad \Omega_r = \omega_3 \frac{i_1 - i_3}{i_1}Ie_3$$

The rotor equation is now

$$\dot{R} = -\frac{1}{2}\Omega_l R - \frac{1}{2}R\Omega_r$$

which integrates immediately to

$$R(t) = \exp(-\frac{1}{2}\Omega_l t)R(0)\exp(-\frac{1}{2}\Omega_r t)$$

Fully describes the motion of a symmetric top. An 'internal' rotation in the e_1e_2 plane (a symmetry of the body), followed by a rotation in the angular-momentum plane.

AXIOMATIC DEVELOPMENT

We should now have an intuitive feel for the elements of a geometric algebra and some of their properties. Now need a proper axiomatic framework. Use symbol \mathcal{G}_n for the GA of n-dimensional (Euclidean) space. This space is linear over the reals

$$\lambda A + \mu B \in \mathcal{G}_n, \quad \forall \lambda, \mu \in \mathcal{R}, A, B \in \mathcal{G}_n$$

Not interested in complex superpositions!

The linear space \mathcal{G}_n is graded. Elements of this space are called multivectors. Every multivector can be written as a sum of pure grade terms

$$A = \langle A \rangle_0 + \langle A \rangle_1 + \dots = \sum_r \langle A \rangle_r$$

The operator $\langle A \rangle_r$ projects onto the grade-r terms in A. Each graded subspace of \mathcal{G}_n is also closed under addition and forms a linear subspace.

Multivectors containing terms of only one grade are called homogeneous. Write these as A_r ,

$$\langle A_r \rangle_r = A_r$$

NB Avoid confusing A_r with $\{e_k\}$.

The grade-0 terms in \mathcal{G}_n are real scalars. Abbreviate

$$\langle A \rangle_0 = \langle A \rangle$$

The grade-1 objects $\langle A \rangle_1$ are vectors.

THE GEOMETRIC PRODUCT

Recall from Lecture 1 that the geometric product is associative

$$A(BC) = (AB)C = ABC$$

and distributive over addition

$$A(B+C) = AB + AC$$

Also the square of any vector is a scalar. From these get

$$ab + ba = (a + b)^2 - a^2 - b^2,$$

Another scalar. Define the inner product

$$a \cdot b = \frac{1}{2}(ab + ba)$$

and the outer product

$$a \wedge b = \frac{1}{2}(ab - ba)$$

Both defined from the geometric product. Recover familiar result

$$ab = a \cdot b + a \wedge b$$

Now extend this idea. Form the product of a vector and a bivector

$$a(b \wedge c) = \frac{1}{2}a(bc - cb)$$

$$= (a \cdot b)c - (a \cdot c)b - \frac{1}{2}(bac - cab)$$

$$= 2(a \cdot b)c - 2(a \cdot c)b + \frac{1}{2}(bc - cb)a$$

Define the inner product

$$a \cdot (b \wedge c) = \frac{1}{2} [a(b \wedge c) - (b \wedge c)a] = (a \cdot b)c - (a \cdot c)b$$

Must be a vector. The remaining symmetric part

$$a \wedge (b \wedge c) = \frac{1}{2} [a(b \wedge c) + (b \wedge c)a] = a \wedge b \wedge c$$

is a trivector – totally antisymmetric on a, b, c. Now have

$$a(b \wedge c) = a \cdot (b \wedge c) + a \wedge (b \wedge c)$$

Found this in Lecture 2 from a different, geometric argument.

N.B. Recall the important operator ordering convention: in the absence of brackets, *inner and outer products take* precedence over geometric products. *i.e.*

$$(a \cdot b)c = a \cdot b c$$

no confusion possible with $a \cdot (bc)$

BLADES AND BASES

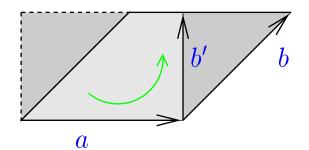
Outer product is the totally antisymmetrised sum of all products of vectors,

$$a_1 \wedge a_2 \wedge \dots \wedge a_r = \frac{1}{r!} \sum_{r=1}^{\infty} (-1)^{\epsilon} a_{k_1} a_{k_2} \cdots a_{k_r}$$

Sum runs over every permutation of indices $k_1 \dots k_r$. $\epsilon = \pm 1$ for even/ odd permutation. A multivector which is purely an outer product is called a blade.

Fortunately every blade can be written as a geometric product of orthogonal, anticommuting vectors. Anticommutation then imposes the antisymmetry. Take vectors a, b, $b' = b - \lambda a$

$$a \wedge b = a \wedge (b - \lambda a)$$
$$= a \wedge b'$$



Same area and orientation so same bivector. Form

$$a \cdot b' = a \cdot (b - \lambda a) = a \cdot b - \lambda a^2$$
.

Set $\lambda = a \cdot b/a^2$ so that $a \cdot b' = 0$. Can write

$$a \wedge b = a \wedge b' = ab'$$
.

Full proof continues by induction. Note that

$$b' = b - a^{-1}a \cdot b = b - \frac{1}{2}a^{-1}(ab + ba)$$
$$= \frac{1}{2}(b - a^{-1}ba) = a^{-1}\frac{1}{2}(ab - ba) = a^{-1}a \wedge b.$$

Clear why $ab' = a \wedge b$, and generalises.

Can now view \mathcal{G}_n in terms of orthonormal basis vectors $\{e_i\}, i=1\dots n$. Build up a basis for the algebra as

$$1, \quad e_i, \quad e_i e_j \ (i < j) \quad e_i e_j e_k \ (i < j < k) \quad \text{etc.}$$

Denote each grade-r subspace of \mathcal{G}_n by \mathcal{G}_n^r . Natural question: what is the dimension of each of these graded subspaces?

Choose r distinct vectors. Different because of the total antisymmetry. Order is irrelevant, again because of the antisymmetry, Just need number of distinct combinations of r objects from a set of n. *i.e.*

$$\operatorname{Dim}\left[\mathcal{G}_{n}^{r}\right]=\binom{r}{n}.$$

Get the binomial coefficients. Contain a surprising wealth of geometric information! The total dimension is

$$\text{Dim} [\mathcal{G}_n] = \sum_{r=0}^n \binom{r}{n} = (1+1)^n = 2^n.$$

Important Point *not all homogeneous multivectors are pure blades.* Confusing at first, need to go to 4-d for first counter-example. Take $\{e_1 \dots e_4\}$ orthonormal basis for \mathcal{G}_4 . Six independent basis bivectors. Can construct terms like

$$B = \alpha e_1 \wedge e_2 + \beta e_3 \wedge e_4, \quad \alpha, \beta \in \mathcal{R}.$$

B is a pure bivector — homogeneous. But cannot find two vectors a and b such that $B=a \wedge b$. Because $e_1 \wedge e_2$ and $e_3 \wedge e_4$ do not share a common line. Makes the bivector B hard to visualise. An alternative is provided by projective geometry (non-intersecting lines).

FURTHER PROPERTIES

Take a grade-r blade, decomposed into orthogonal vectors $a_1a_2\cdot \cdot \cdot a_r$. Have

$$aa_{1}a_{2} \cdots a_{r} = 2a \cdot a_{1} a_{2} \cdots a_{r} - a_{1}aa_{2} \cdots a_{r}$$

$$= 2 \sum_{k=1}^{r} (-1)^{k+1} a \cdot a_{k} a_{1}a_{2} \cdots \check{a}_{k} \cdots a_{r}$$

$$+ (-1)^{r} a_{1}a_{2} \cdots a_{r}a$$

The \check{a}_k term is missing from the series. Each term in the sum has grade r-1, so define

$$a \cdot A_r = \langle aA_r \rangle_{r-1} = \frac{1}{2} (aA_r - (-1)^r A_r a)$$

Remaining term in aA_r is totally antisymmetric, so have

$$a \wedge A_r = \langle aA_r \rangle_{r+1} = \frac{1}{2} (aA_r + (-1)^r A_r a)$$

Can still write

$$aA_r = a \cdot A_r + a \wedge A_r.$$

Multiplication by a vector raises and lowers the grade by 1.

Now suppose the $\{a_i\}$ are arbitrary. Write

$$a \cdot (a_1 \wedge a_2 \wedge \dots \wedge a_r)$$

$$= \frac{1}{2} [a \langle a_1 a_2 \dots a_r \rangle_r - (-1)^r \langle a_1 a_2 \dots a_r \rangle_r a]$$

$$= \frac{1}{2} \langle a a_1 a_2 \dots a_r - (-1)^r a_1 a_2 \dots a_r a \rangle_{r-1}$$

Final step because

$$a_1 a_2 \cdots a_r = A_r + A_{r-2} + \cdots$$

Only the A_{r-2} term is a potential problem, but

$$\frac{1}{2}(aA_{r-2} - (-1)^r A_{r-2}a) = a \cdot A_{r-2}$$

is grade r-3. Now use preceding to get

$$a \cdot (a_1 \wedge a_2 \wedge \cdots \wedge a_r)$$

$$= \langle \sum_{k=1}^r (-1)^{k+1} a \cdot a_k \ a_1 a_2 \cdots \check{a}_k \cdots a_r \rangle_{r-1}$$

$$= \sum_{k=1}^r (-1)^{k+1} a \cdot a_k \ a_1 \wedge a_2 \wedge \cdots \wedge \check{a}_k \wedge \cdots \wedge a_r$$

Extremely useful! First two cases

$$a \cdot (a_1 \wedge a_2) = a \cdot a_1 a_2 - a \cdot a_2 a_1$$

$$a \cdot (a_1 \wedge a_2 \wedge a_3) = a \cdot a_1 a_2 \wedge a_3 - a \cdot a_2 a_1 \wedge a_3$$

$$+ a \cdot a_3 a_1 \wedge a_2$$

NB similarity with double cross product of vectors in 3-d.

The general product of two homogeneous multivectors decomposes as

$$A_r B_s = \langle A_r B_s \rangle_{|r-s|} + \langle A_r B_s \rangle_{|r-s|+2} + \cdots + \langle A_r B_s \rangle_{r+s}$$

Can see this by expanding both out in terms of an orthogonal basis. Retain the \cdot and \wedge symbols for the lowest and highest grade terms in this series

$$A_r \cdot B_s = \langle A_r B_s \rangle_{|r-s|}$$

 $A_r \wedge B_s = \langle A_r B_s \rangle_{r+s}$

Definitions ensure the exterior product is also associative.