January 21, 1999

PHYSICAL APPLICATIONS OF
GEOMETRIC ALGEBRA

LECTURE 3

SUMMARY

This lecture is split into three sections. In the first we will
conclude our treatment of rigid body dynamics by solving the
equations of motion for a symmetric top. In the second section
we will put some of the ideas from the first two lectures onto a
firmer axiomatic basis. In the final section we will start to look
at the GA treatment of reflections and rotations in greater
depth.

e The inertia Tensor.

e The rotor solution for the motion of a symmetric top.
e The axioms of geometric algebra.

e An array of useful algebraic results.

e Reflections, rotations and rotors

The webpage for this course is

www.mrao.cam.ac.uk/~clifford/ptllicourse/.




‘ THE INERTIA TENSOR I

Rigid body has density p, so

/da:p— /d pr =10

The velocity of the point y is
v(t) RxR + RxR + iy
—%RQBZIBR + %RxQBﬁ + v
RZC'QB R + Vo

(vg is the velocity of the centre of mass.) We need the angular

momentum bivector L

L [ d&x p(y — x0) Av
[ & p(ReR)A(Rz-Qp R+ vp)
R([d% pxn(z-Qp)) R

From this we extract inertia tensor

7(B) = /d:z:p:z:/\(:zfoB)

A linear function mapping bivectors to bivectors.
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The body rotates in the B plane, at angular frequency | B|.
The momentum density is px - B. Angular momentum density
is 2\ (px-B). Integrate to get the total, Z( B), expressed in

the reference body. Rotate to

~

L = RI(Qp)R

7Z(B) will lie in the same plane as B if B is perpendicular to

one of the principal axes

Now L = T (the couple as a bivector), so form

. ~

I = RI(Qp)R+ RI(Qp)R + RI(Op)R
R[Z(p) — 1QpT(0p) + 1T(25)Q5]R
R[I(QB> — QB XI(QB”R

Have introduced the extremely useful commutator product




Do not confuse with the cross product! The torque-free

equation L = 0 reduces to
I(QB> — QB XI(QB> =0

Align the body frame { ey, } with the principal axes, with

moments of inertia iz, k = 1... 3. Have

QB:ZWkleka Qszzwkffk
k k

L = Z ikwklfk.
k

Expanding out recovers the Euler equations, e.g.

w3]i363 = <W1]€1 + w2162> X <W1i1]€1 + WQi2162>

=  l3w3 = <Zl — ig)&)ﬂﬂg

‘ EXAMPLE — THE SYMMETRIC TOP I

Have two equal moments of inertia, 11 = 19 7% 3.

Immediately get that w3 is constant. (Handout gives an

alternative coordinate-free derivation). Write

I(B) = ZlB + <13 - i1><B/\63>63




NB B Aes is a trivector. Now have

I(QB> — <13 — i1><QBA€3>€3
I(QB> —+ <Zl — i3>¢d3]63

11 — 13 ~
W3RI€3R

11
The rotor equation now becomes

: 1
R = —%QsR = —5<LR—|— R(Zl - i3>¢d3]63>
1

Define two constant precession rates,

1
Q[ — ,—L, Qr

11

The rotor equation is now

R=-10

which integrates immediately to
R(t) = exp(—5Qt)R(0) exp(—5Q,1)

Fully describes the motion of a symmetric top. An ‘internal’
rotation in the e €5 plane (a symmetry of the body), followed

by a rotation in the angular-momentum plane.




‘ AXIOMATIC DEVELOPMENT I

We should now have an intuitive feel for the elements of a
geometric algebra and some of their properties. Now need a
proper axiomatic framework. Use symbol G,, for the GA of
n-dimensional (Euclidean) space. This space is linear over the

reals
M+ uBe€G, VY\ueR,A BEeGg,

Not interested in complex superpositions!

The linear space G,, is graded. Elements of this space are
called multivectors. Every multivector can be written as a sum

of pure grade terms

A= (Ao + (A + -+

The operator <A>r projects onto the grade-r terms in A.
Each graded subspace of G,, is also closed under addition

and forms a linear subspace.

Multivectors containing terms of only one grade are called
homogeneous. Write these as A,

<Ar>r = A,

NB Avoid confusing A, with {eg }.




The grade-0 terms in G,, are real scalars. Abbreviate
(A)o = (A)

The grade-1 objects (A); are vectors.

‘ THE GEOMETRIC PRODUCT I

Recall from Lecture 1 that the geometric product is associative

A(BC) = (AB)C = ABC
and distributive over addition
A(B+C)=AB+ AC
Also the square of any vector is a scalar. From these get
ab + ba = (a + b)* — a® — b?,

Another scalar. Define the inner product

a-b = %(ab+ ba)

and the outer product

aAb = =(ab — ba)

1
2
Both defined from the geometric product. Recover familiar

result
ab=a-b+ aNb




Now extend this idea. Form the product of a vector and a

bivector

a(bAc)

2(a-b)c —2(a-c)b + (b — cb)a

Define the inner product

a-(bAc) = t[a(bAc) — (bAc)a] = (a-b)e — (a-c)b

Must be a vector. The remaining symmetric part
an(bAc) = s[a(bAc) + (bAc)a) = aAbAc
is a trivector — totally antisymmetric on a, b, c. Now have
a(bAc) = a-(bAc) + aN(bAc)

Found this in Lecture 2 from a different, geometric argument.

N.B. Recall the important operator ordering convention: in the
absence of brackets, inner and outer products take

precedence over geometric products. i.e.
(a-b)c =a-bc

no confusion possible with a- (bc)




‘ BLADES AND BASES I

Outer product is the totally antisymmetrised sum of all

products of vectors,

1
apNag N\ - -Nap = ] Z(‘Deaklakg cc A,

Sum runs over every permutation of indices ki . . . k..
e = *1 for even/ odd permutation. A multivector which is

purely an outer product is called a blade.

Fortunately every blade can be written as a geometric product
of orthogonal, anticommuting vectors. Anticommutation then

imposes the antisymmetry. Take vectors a, b, b’ = b — \a

Same area and orientation so same bhivector. Form

a-bl =a(b—Xa) =a-b— \a’.

Set A\ = a-b/a’ sothata-b’ = 0. Can write

aNb = aAb = ab'.




Full proof continues by induction. Note that

Clear why ab’ = aAb, and generalises.

Can now view G,, in terms of orthonormal basis vectors

{e;},i = 1...n.Build up a basis for the algebra as

1, e, eej(i<j) eejer(i<j<k) et

Denote each grade-r subspace of G,, by G . Natural
guestion: what is the dimension of each of these graded
subspaces?

Choose 7 distinct vectors. Different because of the total
antisymmetry. Order is irrelevant, again because of the
antisymmetry, Just need number of distinct combinations of r

objects from a set of n. i.e.
Dim [G,,] = (5,) -

Get the binomial coefficients. Contain a surprising wealth of

geometric information! The total dimension is

Dim (G, ]




Important Point not all homogeneous multivectors are pure
blades. Confusing at first, need to go to 4-d for first
counter-example. Take {61 - 64} orthonormal basis for G4.

Six independent basis bivectors. Can construct terms like
B = aeiNes + BesNhey, a,B3 € R.

B is a pure bivector — homogeneous. But cannot find two
vectors a and b such that B = aAb. Because e; Aes and
e3 A\ e do not share a common line. Makes the bivector B

hard to visualise. An alternative is provided by projective

geometry (non-intersecting lines).

‘ FURTHER PROPERTIES I

Take a grade-r blade, decomposed into orthogonal vectors

aijas - - - a,. Have

aai1Gs - ap = 26-a1 Q9 Gpr — A1QA2 - - - Gy
T k41 -~
2> (=) a-araraz---ap - ay
+(—1)"aras - - - ara

The aj term is missing from the series. Each term in the sum

has grade 7 — 1, so define

a-A, =(aA,)r—1=35(aA, — (—1)"A.a)

1
2




Remaining term in a A, is totally antisymmetric, so have
anA, = (aA.)r11 = 2(aA, + (-1)"A.a)

Can still write
aA, =a A, +aNA,.
Multiplication by a vector raises and lowers the grade by 1.

Now suppose the {a; } are arbitrary. Write

a-(ay Aas A\---Aa,)

%[a<a1a2 e Cbr>r — (—1>T<CL16L2 cee ar>ra]

%(CLCL1CL2 rar — (1) araz - ara)r—

Final step because
ala@...a}r :AT+AT—2+
Only the A, _o term is a potential problem, but

<CLA7~_2 — <—1>TA7~_26L> — CL’AT_Q

L
2

is grade r — 3. Now use preceding to get

a-(ay NagN\---Aay,)

— <Z7I;:1<—1>k+1a.ak aias - - dk ... a’?“>7“—1

=3 (=D aapar Aaa A+ Ak A Aa,




Extremely useful! First two cases

a-(ayNaz) = a-a;as —a-asa
a-(a1 NasNasz) a-a; asNas — a-as a; Aas

+a-az a1 Nas
NB similarity with double cross product of vectors in 3-d.

The general product of two homogeneous multivectors

decomposes as

ATBS — <A7“Bs>|r—s| + <ArBs>|r—s|_|-2 + -
+<A7“Bs>r—i—s
Can see this by expanding both out in terms of an orthogonal

basis. Retain the - and A symbols for the lowest and highest

grade terms in this series

Ar°Bs <ArBs>|r—s|
Ar/\Bs <ArBs>r+s

Definitions ensure the exterior product is also associative.




