1.1 Elementary principles
 
Let x(t) a particule trajectory where x is the position vector relative to some orogin and t the "absolute" time, m the constant mass.
 
The particule has velocity :                     v = dx/dt = D(x,t)
                       momentum :                 p = m v
 
Newton second law states that                f = dp/dt  where the vector f is the force acting on the particule. the
 
m is constant, and we recover familiar expression
 
                                                         f = m a  where a is the acceleration
                                                         a = d²x/dt²
 
The path of a single particule is then determined by a second-order differential equation.
 
The work done by the force f on a single particule is
 
                                                         W12 = Defint(f . v, t1, t2) = Defint(f . ds, 1, 2)
 
The final form illustrates that the integral is independant of how the path is parametrized.
From Newton second law, we have
 
                                                           W12 = m Defint(dv/dt . v dt, t1, t2) = m/2 Defint(d/dt(v²) dt, t1, t2)
where v =|v| = sqrt(v²)
 
It folows that the work done is equal to the change of kinetic energy
         
                                                            T = 1/2 m v²
 
In the case where the forve is independent of the path from point 1 to point 2 the forve is said to be conservative, and can be write as the gradient of a potential
 
                                                             f = - nabla(V)
 
for conservative forces the work also evaluates to
 
                                                              W12 = - Defint(ds . nabla(V) = V1 - V2
 
and the total energy                                   E = T + V is conserved
 

1.2  Angular momentum
 
                                                              L = x ^ p                 L a bivector
If we defferentiate L we obtain
 
                                                              dL/dt = v ^ (m v) + x ^ (m a) = x ^ f
 
We fedine the torque N about the origin as        N = x ^ f
 
so that the torque and angular momentum are related by
 
                                                               dL/dt = N
 
N is a bivector. Both L and N depend on the origin. Applyng two torques is found by adding the respective bivectors
 
x
The angular momentum bivewctor can be written in an alternative way by defining first r = |x| and writing
 
                                                              x = r x      
We therefore have
 
                                                               dx/dt = d/dt(r x) = dr/dt x  + r dx/dt
 
So that                                                      L = m x ^ (dr/dt x + r d/dt(x) = m r x  ^ (dr/dt x + r d/dt(x)  
                                                               L = m r² x  ^ d/dt(x)   (1)
But since x² = 1   we have
                                                               0 = d/dt(x²) = é x . d/dt(x)    
 
Wecan therefore eliminate the outer product in equation (1) and write
 
                                                                L = m r² x  d/dt(x) = - m r² d:dt(x) x                              
    mechanics
 

                           
APPLICATIONS 
exercices
mechanics
geometry
electromagnetism
Lorentz transf. APS
Lorentz transf. STA
exterior algebra
linear transf.
quaternions
spinors
STA
APS
conformal model
hogeneous model