set basis vectors
vector a
vector b
 
geometric product
inner product
outer product
 
2-blade A
multivector B
grade0
grade1
grade2
grade3
 
B reverse
B grade involution
B Clifford conjugation
 
B inverse
B dual
B module
B unit
 
left contraction
right contraction
Hestenes dot product
result
 

e0, e1, e2, e3, e12, e13, e23, e123
(0,1,1,0,0,0,0,0)        
(0,1,0,-1,0,0,0,0)
 
e0 -e12 -e13-e23
e0
-e12-e13-e23  
 
-e12-e13-e23
e0+e1-e3-e12-e13-e23
e0
e1-e3
-e12-e13-e23
0
 
e0+e1-e3+e12+e13+e23
e0-e1+e3-e12-e13-e23
e0-e1+e3+e12+e13+e23
 





e0-e1-e2-2e3
e0+e1+e2
e0-2e2-2e3
 
e0+e1-e3-e12-e13-e23
e0+e1-e3-e12-e13-e23
script input
 

Cl (3)
a=e1+e2
b=e1-e3
 
gp (a,b)
inp (a,b)
oup (a,b)
 
A=outp (a,b)
B=e0+b+A
grade (B,0)
grade (B,1)
grade (B,2)
grade (B,3)
 
rev (B)
invol (B)
cj (B)
 
inverse (B)
dual (B)
magnitude (B)
normalize (B)
 
lc (a,B)
rc (a,B)
doth (a,B)
 
log1 (exp1(B))
pow (sqrt1(B), 2)
sin1 (B)
cos1 (B)
...
base functions
 

Cl3
a=(1,1,0)
b=(1,0,-1)
products
a b
a.b
a^b
grade projection
A=a^b
B=2+b+A
<B>0
<B>1
<B>2
<B>3
involutions
B~
B'
B"
inverse, dual, abs
1/B
B*
|B|
B/|B|
other products
a_|B
a|_B
a.B
math functions
exp, log sqrt, pow
sin, cos, tan
sinh, cosh, tanh,
asin, acos, atan,
asinh, acosh, atanh
    EVAlgebra summary